REDUCE IT: et après ?

Ph.Gabriel Steg

Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Université Paris-Cité, INSERM U-1148-LVTS, Paris, France, FACT: French Alliance for Cardiovascular clinical Trials Innovation Chair- Institut Universitaire de France

😏 @gabrielsteg

Inserm

Disclosures

- Research grants : Amarin, Bayer, Sanofi, and Servier
- Clinical Trials (Steering committee, CEC, DSMB) : Amarin,
 AstraZeneca, Bayer, Bristol-Myers Squibb, Idorsia, Novartis, Pfizer,
 Sanofi, Servier
- **Consulting or speaking**: Amarin, Amgen, BMS/Myokardia, Novo-Nordisk, Senior Associate Editor at *Circulation*
- Executive steering committee member **REDUCE IT** trial

Low Dose Omega-3 Mixtures Show No Significant Cardiovascular Benefit

Adapted with permission[‡] from Aung T, Halsey J, Kromhout D, et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77917 individuals. *JAMA Cardiol.* 2018;3:225-234. [[‡]https://creativecommons.org/licenses.org/by-nc/4.0/]

JELIS shows CV Risk Reduction with 1.8 g/d EPA in Japanese Hypercholesterolemic Patients

18,645 patients with TC ≥ 6.5 mmol/l Kaplan-Meier Estimates of Incidence of Coronary Events

Adapted with permission from Yokoyama et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised openlabel, blinded endpoint analysis. *Lancet.* 2007;369:1090-1098.

REDUCE-IT Design

* Due to the variability of triglycerides, a 10% allowance existed in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. Protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance.

⁺ Median trial follow-up duration was 4.9 years (minimum 0.0, maximum 6.2 years).

Adapted with permission[‡] from Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. *Clin Cardiol*. 2017;40:138-148. REDUCE-IT ClinicalTrials.gov number, NCT01492361. [[‡]https://creativecommons.org/licenses/by-nc/4.0/]

REDUCE IT: CV risk reduction with 4 g purified EPA/d in statin-treated pts at high risk with elevated TGs

reduce-it

Primary Composite Endpoint:

CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

Key Secondary Composite Endpoint:

CV Death, MI, Stroke

Prespecified Hierarchical Testing

Endpoint	Hazard Ra	atio Icosapent Ethyl	Placebo	Hazard Ratio (95% CI)	RRR	P-value
	(95% C	i) n/N (%)	n/N (%)			
Primary Composite (ITT)	-=-	705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	25%▼	<0.001
Key Secondary Composite (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	26%▼	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58–0.81)	31%▼	<0.001
Urgent or Emergent Revascularization		216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55–0.78)	35%▼	<0.001
Cardiovascular Death	_	174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66–0.98)	20%▼	0.03
Hospitalization for Unstable Angina	_ _	108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53–0.87)	32%▼	0.002
Fatal or Nonfatal Stroke	_	98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke		549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69–0.86)	23%▼	<0.001
Total Mortality		274/4089 (6.7%)	310/4090 (7.6%)	0.87 (0.74–1.02)	13%▼	0.09
	0.4 1.0	1.4		RRR denotes rel	ative risk	reduction
Icosape	nt Ethyl Better	Placebo Better	Bhatt DI Ste	a PG Miller M et al M	Fnal I	Mod 2018

Bhatt DL, Steg PG, Miller M, et al. *N Engl J Med.* 2018.

Key Secondary End Point in Subgroups

E	nd Point/Subgroup	Hazard Ratio (95% CI)	n/N (%)	Placebo n/N (%)	HR (95% CI)* Int P Va	-	
K. S	ey Secondary Composite Endpoint (ITT) ubgroup Risk Category		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)		
	Secondary Prevention Cohort Primary Prevention Cohort Region Western		361/2892 (12.5%) 98/1197 (8.2%) 358/2906 (12.3%)	489/2893 (16.9%) 117/1197 (9.8%) 473/2905 (16.3%)	0.72 (0.63–0.82) 0.81 (0.62–1.06) 0.73 (0.64–0.84)		
Subgroup	Eddeffi Asia Pacific	Hazard Ratio	Icosapent Eth	11//1053 (11.1%) 16/132 (12.1%)	Placebo	HR (95% CI)	Int
		(95% CI)	n/N (%)		n/N (%)		P Val
Risk Category Secondary Prevention Coho Primary Prevention Cohort	ort –		361/2892 (12.59 98/1197 (8.2%	%) 489 5) 11	9/2893 (16.9 7/1197 (9.8	9%) 0.72 (0.63–0.82) %) 0.81 (0.62–1.06)	0.41
	Diabetes No Diabetes		286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.70 (0.60–0.81) 0.80 (0.65–0.98)		
	Baseline eGFR <60 mL/min/1.73m ² 60~90 mL/min/1.73m ² ≥90 mL/min/1.73m ²		152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.77 0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)		
	Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL		290/2481 (11.7%) 169/1605 (10.5%)	371/2469 (15.0%) 235/1620 (14.5%)	0.62 0.75 (0.65–0.88) 0.71 (0.58–0.86)		
	Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL		421/3674 (11.5%) 38/412 (9.2%)	546/3660 (14.9%) 60/429 (14.0%)	0.68 0.74 (0.65–0.84) 0.66 (0.44–0.99)		
	Baseline Triglycerides ≥200 and HDL-C ≤35 mg/dL Yes No		101/823 (12.3%) 356/3258 (10.9%)	136/794 (17.1%) 470/3293 (14.3%)	0.50 0.68 (0.53–0.88) 0.75 (0.65–0.86)		
	Baseline Statin Intensity High Moderate Low		151/1290 (11.7%) 270/2533 (10.7%) 37/254 (14.6%)	210/1226 (17.1%) 361/2575 (14.0%) 32/267 (12.0%)	0.10 0.66 (0.54–0.82) 0.74 (0.63–0.87) 1.20 (0.74–1.93)		
	Baseline LDL-C (Derived) by Tertiles ≤67 mg/dL >67-s84 mg/dL >84 mg/dL		157/1481 (10.6%) 157/1347 (11.7%) 145/1258 (11.5%)	196/1386 (14.1%) 208/1364 (15.2%) 202/1339 (15.1%)	0.97 0.73 (0.59-0.90) 0.75 (0.61-0.93) 0.74 (0.60-0.91)		
	Baseline hsCRP ≤2 vs >2 mg/L ≤2 mg/L >2 mg/L	=	183/1919 (9.5%) 276/2167 (12.7%)	245/1942 (12.6%) 361/2147 (16.8%)	0.97 0.73 (0.61–0.89) 0.73 (0.63–0.86)		
		0.2 0.6 1.0 Icosapent Ethyl Better Place	1.4 1.8 bo Better				

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018.

Time to Coronary Revascularization

Peterson BE, Bhatt DL, Steg PG, et al. Circulation. 2020.

Estimated Kaplan-Meier event rate at approximately 5.7 years. The curves were visually truncated at 5.7 years. ARR is based on the observed rates of events of 9.2% for IPE and 13.3% for Placebo.

Time to Elective, Urgent, and Emergent Revascularization

Time to Elective Coronary Revascularization

Time to Urgent Coronary Revascularization

Years since Randomization

Years since Randomization

Years since Randomization

Time to Emergent Coronary

Revascularization

Estimated Kaplan-Meier event rate at approximately 5.7 years. The curves were visually truncated at 5.7 years. Time to Elective Revascularization ARR is based on the observed event rates of 4.7% for IPE and 6.8% for Placebo. Peterson BE, Bhatt DL, Steg PG, et al. Circulation. 2020. Time to Emergent Coronary Revascularization ARR is based on the observed event rates of 1.0% for IPE and 1.6% for Placebo. Time to Urgent Coronary Revascularization ARR is based on the observed rates of 4.4% for IPE and 6.6% for Placebo.

Time to PCI and CABG

Peterson BE, Bhatt DL, Steg PG, et al. Circulation. 2020.

Estimated Kaplan-Meier event rate at approximately 5.7 years. The curves were visually truncated at 5.7 years. Time to PCI ARR is based on the observed event rates of 7.7% for IPE and 10.9% for Placebo. Time to CABG ARR is based on the observed event rates of 2.9% for IPE and 3.0% for Placebo.

Benefit of Icosapent ethyl in Pts with a history of PCI A post hoc analysis in 3408 pts

Peterson BE et al. JAHA 2022;11.

Reduce-it: patients with prior MI, PCI or CABG

Primary end	point				
	Icosapent-ethyl	Placebo	HR	ARR	NNT 4.9yr
All patients ¹	705/4098 (17.2)	901/4090 (22.0)	0.75 (0.68-0.83)	4.8	21
Prior MI ²	378/1870 (20.2)	475/1823 (26.1)	0.74 (0.65-0.85)	5.9	17
Prior PCI³	362/1737 (20.8)	491/1671 (29.4)	0.66 (0.58-0.76)	8.5	12
Prior CABG ⁴	179/897 (22.0)	265/940 (28.2)	0.76 (0.63-0.92)	6.2	16

- 1. Bhatt DL et al. *N Engl J Med*. 2019;380
- 2. Gaba P et al., *JACC* 2022;79;
- 3. Peterson BE et al. JAHA 2022; 11;
- 4. Verma S et al. *Circulation* 2021;144.

Icosapent ethyl did <u>not</u> reduce the risk for heart failure hospitalization compared with placebo, and this was not significantly different by history of prevalent heart failure. Risk for heart failure requiring hospitalization by treatment assignment in patients with and without prevalent heart failure.

Senthil Selvaraj. Journal of the American Heart Association. Impact of Icosapent Ethyl on Cardiovascular Risk Reduction in Patients With Heart Failure in REDUCE-IT, Volume: 11, Issue: 7, DOI: (10.1161/JAHA.121.024999)

What about safety ?

Treatment-Emergent Adverse Events

No Overall Treatment Difference in Adverse Event Profiles

	Icosapent Ethyl (N=4089)	Placebo (N=4090)	P-value*
Subjects with at Least One TEAE, n (%)	3343 (81.8%)	3326 (81.3%)	0.63
Serious TEAE	1252 (30.6%)	1254 (30.7%)	0.98
TEAE Leading to Withdrawal of Study Drug	321 (7.9%)	335 (8.2%)	0.60
Serious TEAE Leading to Withdrawal of Study Drug	88 (2.2%)	88 (2.2%)	>0.99
Serious TEAE Leading to Death	94 (2.3%)	102 (2.5%)	0.61

TEAE event rates represent the enrolled high CV risk patients and the 4.9-year median study follow-up. * From Fisher's exact test.

Bhatt DL, Steg PG, Miller M, et al. *N Engl J Med*. 2019; 380:11-22.

Treatment-Emergent Adverse Event of Interest: Bleeding

	Icosapent Ethyl (N=4089)	Placebo (N=4090)	P-value*
All Bleeding TEAEs	482 (11.8%)	404 (9.9%)	0.006
Bleeding SAEs	111 (2.7%)	85 (2.1%)	0.06
Gastrointestinal bleeding	62 (1.5%)	47 (1.1%)	0.15
Central nervous system bleeding	14 (0.3%)	10 (0.2%)	0.42
Other bleeding	41 (1.0%)	30 (0.7%)	0.19
Intracranial Bleeding	0 (0.0%)	1(0.0%)	>0.99
Hemorrhagic Stroke	13 (0.3%)	10 (0.2%)	0.54

Note: Hemorrhagic stroke was an adjudicated endpoint; other bleeding events were included in safety analyses * From Fisher's exact test.

Bhatt DL, Steg PG, Miller M, et al. *N Engl J Med*. 2019; 380:11-22. and *FDA Advisory Committee*, 2019.

Time to First Event, Primary Composite Endpoint in Patients with Recent ACS <12 Months

Steg PG, Bhatt DL, Miller M, et al. ACC 2023.

Treatment Emergent Bleeding Adverse Events or Hemorrhagic Stroke Endpoints in Patients with Recent ACS <12 Months

Note: A treatment emergent adverse event (TEAE) is defined as an event that first occurs or worsens in severity on or after the date of dispensing study drug and within 30 days after the completion or withdrawal from study. For each subject, multiple TEAEs of the same grouped term are counted only once within each grouped term. Events that were positively adjudicated as clinical endpoints are not included.

Bleeding-related TEAEs are identified by the standardized MedDRA queries of 'Gastrointestinal haemorrhage', 'Central Nervous System haemorrhages and cerebrovascular conditions' and 'Haemorrhage terms (excl laboratory terms)'. Note: Hemorrhagic stroke is an adjudicated endpoint.

Steg PG, Bhatt DL, Miller M, et al. ACC 2023.

Treatment Emergent Bleeding Adverse Events or Hemorrhagic Stroke Endpoints in Patients with Recent ACS <12 Months on Dual Anti-platelet Therapy at Baseline

	Icosapent Ethyl (N=287)	Placebo (N=297)	Overall (N=584)	Fisher's Exact P-value
	n (%)	n (%)	n (%)	
Subjects with Any Bleeding TEAE or Hemorrhagic Stroke				
All Bleeding TEAEs	22 (7.7)	28 (9.4)	50 (8.6)	0.46
Bleeding SAEs	5 (1.7)	11 (3.7)	16 (2.7)	0.20
Gastrointestinal Bleeding	2 (0.7)	7 (2.4)	9 (1.5)	0.18
Central Nervous System Bleeding	0 (0.0)	1 (0.3)	1 (0.2)	1.00
Other Bleeding	3 (1.0)	3 (1.0)	6 (1.0)	1.00
Hemorrhagic Stroke	0 (0.0)	0 (0.0)	0 (0.0)	

Note: Dual anti-platelet therapy is two or more anti-platelet therapies.

Note: A treatment emergent adverse event (TEAE) is defined as an event that first occurs or worsens in severity on or after the date of dispensing study drug and within 30 days after the completion or withdrawal from study. For each subject, multiple TEAEs of the same grouped term are counted only once within each grouped term. Events that were positively adjudicated as clinical endpoints are not included.

Bleeding-related TEAEs are identified by the standardized MedDRA queries of 'Gastrointestinal haemorrhage', 'Central Nervous System haemorrhages and cerebrovascular conditions' and 'Haemorrhage terms (excl laboratory terms)'. Note: Hemorrhagic stroke is an adjudicated endpoint.

Steg PG, Bhatt DL, Miller M, et al. ACC 2023.

Atrial Fibrillation or Flutter

- Atrial fibrillation/flutter requiring hospitalization ≥24 hours was an adjudicated efficacy endpoint
- All other atrial fibrillation/flutter events reside in the safety database

	Icosapent Ethyl (N=4089) n (%)	Placebo (N=4090) n (%)	P-value*
Afib/Aflutter TEAEs and positively adjudicated Afib/Aflutter requiring ≥24 hours hospitalization	321 (7.9)	248 (6.1)	0.002
Afib/Aflutter TEAEs ¹ Serious Afib/Aflutter TEAEs ²	236 (5.8) 22 (0.5)	183 (4.5) 20 (0.5)	0.008 0.76
Positively adjudicated Afib/Aflutter requiring ≥24 hours hospitalization ³	127 (3.1)	84 (2.1)	0.004

Note: Clinical consequences, including stroke, MI, cardiac arrest, and sudden cardiac death were reduced in the overall ITT population, with consistent results in those with a history of atrial fibrillation at baseline.

* From Fisher's exact test.

1. Includes atrial fibrillation/flutter TEAEs. 2. Includes a subset of atrial fibrillation/flutter AEs meeting seriousness criteria. 3. Includes positively adjudicated atrial fibrillation/flutter requiring ≥24 hours hospitalization clinical events by the Clinical Endpoint Committee.

Effect of Long-Term Marine ω-3 Fatty Acids Supplementation on the Risk of Atrial Fibrillation in RCTs of CV Outcomes: A Systematic Review and Meta-Analysis

Gencer et al. *Circulation*., 2022;144 : 1981-1990

Effect of marine ∞-3 fatty acids supplements on the risk of atrial fibrillation events stratified by low dose (≤1 g/d) versus high dose (>1 g/d)

Gencer et al. *Circulation*., 2022;144 : 1981-1990

Benefits of IPE were consistent regardless of AFib/flutter at baseline Endpoints with or without atrial fibrillation/flutter at baseline

Icosapent Ethyl	Placebo	Icosapent Ethyl vs. Placebo	P-value	P-value
n/N (%)	n/N (%)	HR (95% CI)		
705/4089 (17.2) 87/368 (23.6) 618/3721 (16.6)	901/4090 (22.0) 98/383 (25.6) 803/3707 (21.7)		0.83) <0.0001 1.17) 0.36 0.82) <0.0001	0.37
459/4089 (11.2) 64/368 (17.4) 395/3721 (10.6)	606/4090 (14.8) 75/383 (19.6) 531/3707 (14.3)	0.74 (0.65, 0.81 (0.58, 0.72 (0.64,	0.83) <0.0001 1.14) 0.23 0.82) <0.0001	0.55
		0.2 0.6 1.0 2.0 3.0		
	Icosapent Ethyl n/N (%) 705/4089 (17.2) 87/368 (23.6) 618/3721 (16.6) 459/4089 (11.2) 64/368 (17.4) 395/3721 (10.6)	Icosapent EthylPlacebo n/N (%) n/N (%)705/4089 (17.2)901/4090 (22.0)87/368 (23.6)98/383 (25.6)618/3721 (16.6)803/3707 (21.7)459/4089 (11.2)606/4090 (14.8)64/368 (17.4)75/383 (19.6)395/3721 (10.6)531/3707 (14.3)	Icosapent Ethyl Placebo Icosapent Ethyl vs. Placebo n/N (%) n/N (%) HR (95% Cl) 705/4089 (17.2) 901/4090 (22.0) • 87/368 (23.6) 98/383 (25.6) 0.75 (0.68, 618/3721 (16.6) 803/3707 (21.7) • 459/4089 (11.2) 606/4090 (14.8) 0.74 (0.67, 459/4089 (11.2) 606/4090 (14.8) 0.74 (0.65, 64/368 (17.4) 75/383 (19.6) 0.72 (0.64, 0.2 0.6 1.0 2.0 3.0	Icosapent Ethyl Placebo Icosapent Ethyl vs. Placebo P-value n/N (%) n/N (%) HR (95% Cl)

Olshansky B et al JAHA 2023

Benefits of Omega-3 Fatty Acids in ASCVD Risk Reduction

- Robust benefit of IPE in JELIS and REDUCE-IT
- Contrasting results of EPA DHA vs EPA

Major randomized CV outcomes trials of O3FA

P_{trend} < 0.0001

Benefits of Omega-3 Fatty Acids in ASCVD Risk Reduction

- Robust benefit of IPE in JELIS and REDUCE-IT
- Correlated to achieved EPA levels
- Contrasting results of EPA DHA vs EPA
- Effects of mineral oil

Effects on Biomarkers from Baseline to Year 1

	Icosapeı (N=4) Med	nt Ethyl 089) ian	Placebo (N=4090) Median Between Group Di Median at Year 1		ifference		
Biomarker*	Baseline	Year 1	Baseline	Year 1	Absolute Change from Baseline	% Change from Baseline	% Change P-value
Triglycerides (mg/dL)	216.5	175.0	216.0	221.0	-44.5	-19.7	<0.0001
Non-HDL-C (mg/dL)	118.0	113.0	118.5	130.0	-15.5	-13.1	<0.0001
LDL-C (mg/dL)	74.0	77.0	76.0	84.0	-5.0	-6.6	<0.0001
HDL-C (mg/dL)	40.0	39.0	40.0	42.0	-2.5	-6.3	<0.0001
Apo B (mg/dL)	82.0	80.0	83.0	89.0	-8.0	-9.7	<0.0001
hsCRP (mg/L)	2.2	1.8	2.1	2.8	-0.9	-39.9	<0.0001
Log hsCRP (mg/L)	0.8	0.6	0.8	1.0	-0.4	-22.5	<0.0001
EPA (µg/mL)	26.1	144.0	26.1	23.3	+114.9	+358.8	<0.0001

*Apo B and hsCRP were measured at Year 2.

Bhatt DL, Steg PG, Miller M, et al. *N Engl J Med*. 2019; 380:11-22.

FDA statements on hypothetical effects of mineral oil in REDUCE IT

- an exploratory analysis indicates that the effect of LDL-C values on the time to the primary endpoint is numerically small and unlikely to change the overall conclusion of treatment benefit.
- Largest LDL-C differential per FDA analyses would translate to a maximal possible impact of approximately 3.1% points of the observed 25% RRR
- Prior trial reported a CV benefit with EPA consistent with REDUCE-IT

 19% RRR reported in JELIS, which did not include a placebo

FDA Briefing document https://www.fda.gov/media/132477/download

RESPECT EPA: Primary and Secondary Endpoints

*: The composite of CV death, nonfatal MI, nonfatal Ischemic stroke, unstable angina, coronary revascularization)

**: Sudden cardiac death, MI, unstable angina, coronary revascularization

AHA Late breakers 2022

RESPECT EPA: Changes in Fatty Acids, Lipid and hs-CRP

*: p<0.05 compared to baseline level by analysis of covariance

AHA Late breakers 2022

Benefits of Omega-3 Fatty Acids in ASCVD Risk Reduction

- Robust benefit of IPE in JELIS and REDUCE-IT
- Contrasting results of EPA DHA vs EPA
- Effects of mineral oil
- What are the mechanisms for benefit ?

The benefit of IPE is independent of baseline TGs Key Secondary End Point in Subgroups

	Key Secondary Composite Endpoint (ITT)	-8	459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)		
	Subgroup						
	Risk Category Secondary Prevention Cohort Primary Prevention Cohort		361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.41 0.72 (0.63–0.82) 0.81 (0.62–1.06)		
	Region Western Eastern Asia Pacific		358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.54 0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)		
	Ezetimibe Use No Yes		426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.46 0.73 (0.64–0.82) 0.87 (0.54–1.39)		
	Sex Male Female		353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.44 0.72 (0.62–0.82) 0.80 (0.62–1.03)		
	White vs Non-White White Non-White		418/3691 (11.3%) 41/398 (10.3%)	538/3688 (14.6%) 68/401 (17.0%)	0.13 0.76 (0.67–0.86) 0.55 (0.38–0.82)		
	Age Group <65 Years ≥65 Years		200/2232 (9.0%) 259/1857 (13.9%)	290/2184 (13.3%) 316/1906 (16.6%)	0.06 0.65 (0.54–0.78) 0.82 (0.70–0.97)		
	US vs Non-US US Non-US		187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.38 0.69 (0.57–0.83) 0.77 (0.66–0.91)		
	Baseline Diabetes Diabetes No Diabetes	- <u>-</u>	286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.29 0.70 (0.60–0.81) 0.80 (0.65–0.98)		
	Baseline eGFR <60 mL/min/1.73m ² 60~≪90 mL/min/1.73m ² ≥90 mL/min/1.73m ²		152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.77 0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)		
	Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL		290/2481 (11.7%) 169/1605 (10.5%)	371/2469 (15.0%) 235/1620 (14.5%)	0.62 0.75 (0.65–0.88) 0.71 (0.58–0.86)		
Subgroup		Hazard Ratio (95% CI)	Icosapent Eth n/N (%)	yl	Placebo n/N (%)	HR (95% CI)	Int P Val
Baseline Triglycerides ≥150 Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL	vs <150 mg/dL		421/3674 (11.59 38/412 (9.2%)	%) 54) 6	46/3660 (14.9 60/429 (14.09	9%) 0.74 (0.65–0.84) %) 0.66 (0.44–0.99)	0.68

Icosapent Ethyl Better Placebo Better

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018.

The benefit is highly correlated to on-treatment EPA levels Dose-Response of Hazard Ratio (95% CI) Primary Composite Endpoint by On-Treatment Serum EPA Established Cardiovascular Disease or Diabetes with Risk Factors

Note: Area under the curve (AUC)-derived daily average serum EPA (µg/mL) is the daily average of all available post baseline EPA measurements prior to the event. Dose-response hazard ratio (solid line) and 95% CI (dotted lines) are estimated from the Cox proportional hazard model with a spline term for EPA and adjustment for randomization factors and statin compliance¹, age², sex³, baseline diabetes⁴, hsCRP⁵. ***P value is <0.001 for both non-linear trend and for regression slope.**

Bhatt DL. ACC/WCC 2020, Chicago (virtual).

Conclusions

- Clinical trials using low doses of O3FA for CV prevention have yielded inconsistent results
- Modern clinical trials using EPA-DHA have not shown CV benefit
- Three trials using high doses of EPA have shown robust CV benefit
 - JELIS and RESPECT-EPA in comparison to usual care (no placebo control)
 - REDUCE IT in comparison to mineral oil
 - Safety profile appears good, but atrial Fib/flutter is increased and bleeding risk may be increased
- The mechanisms of benefit remain speculative but may include antithrombotic and anti-inflammatory effects. Benefit appears strongly correlated to achieved EPA levels, but not to TGs, LDL-C, or hs-CRP